;(function() { window.createMeasureObserver = (measureName) => { var markPrefix = `_uol-measure-${measureName}-${new Date().getTime()}`; performance.mark(`${markPrefix}-start`); return { end: function() { performance.mark(`${markPrefix}-end`); performance.measure(`uol-measure-${measureName}`, `${markPrefix}-start`, `${markPrefix}-end`); performance.clearMarks(`${markPrefix}-start`); performance.clearMarks(`${markPrefix}-end`); } } }; /** * Gerenciador de eventos */ window.gevent = { stack: [], RUN_ONCE: true, on: function(name, callback, once) { this.stack.push([name, callback, !!once]); }, emit: function(name, args) { for (var i = this.stack.length, item; i--;) { item = this.stack[i]; if (item[0] === name) { item[1](args); if (item[2]) { this.stack.splice(i, 1); } } } } }; var runningSearch = false; var hadAnEvent = true; var elementsToWatch = window.elementsToWatch = new Map(); var innerHeight = window.innerHeight; // timestamp da última rodada do requestAnimationFrame // É usado para limitar a procura por elementos visíveis. var lastAnimationTS = 0; // verifica se elemento está no viewport do usuário var isElementInViewport = function(el) { var rect = el.getBoundingClientRect(); var clientHeight = window.innerHeight || document.documentElement.clientHeight; // renderizando antes, evitando troca de conteúdo visível no chartbeat-related-content if(el.className.includes('related-content-front')) return true; // garante que usa ao mínimo 280px de margem para fazer o lazyload var margin = clientHeight + Math.max(280, clientHeight * 0.2); // se a base do componente está acima da altura da tela do usuário, está oculto if(rect.bottom < 0 && rect.bottom > margin * -1) { return false; } // se o topo do elemento está abaixo da altura da tela do usuário, está oculto if(rect.top > margin) { return false; } // se a posição do topo é negativa, verifica se a altura dele ainda // compensa o que já foi scrollado if(rect.top < 0 && rect.height + rect.top < 0) { return false; } return true; }; var asynxNextFreeTime = () => { return new Promise((resolve) => { if(window.requestIdleCallback) { window.requestIdleCallback(resolve, { timeout: 5000, }); } else { window.requestAnimationFrame(resolve); } }); }; var asyncValidateIfElIsInViewPort = function(promise, el) { return promise.then(() => { if(el) { if(isElementInViewport(el) == true) { const cb = elementsToWatch.get(el); // remove da lista para não ser disparado novamente elementsToWatch.delete(el); cb(); } } }).then(asynxNextFreeTime); }; // inicia o fluxo de procura de elementos procurados var look = function() { if(window.requestIdleCallback) { window.requestIdleCallback(findByVisibleElements, { timeout: 5000, }); } else { window.requestAnimationFrame(findByVisibleElements); } }; var findByVisibleElements = function(ts) { var elapsedSinceLast = ts - lastAnimationTS; // se não teve nenhum evento que possa alterar a página if(hadAnEvent == false) { return look(); } if(elementsToWatch.size == 0) { return look(); } if(runningSearch == true) { return look(); } // procura por elementos visíveis apenas 5x/seg if(elapsedSinceLast < 1000/5) { return look(); } // atualiza o último ts lastAnimationTS = ts; // reseta status de scroll para não entrar novamente aqui hadAnEvent = false; // indica que está rodando a procura por elementos no viewport runningSearch = true; const done = Array.from(elementsToWatch.keys()).reduce(asyncValidateIfElIsInViewPort, Promise.resolve()); // obtém todos os elementos que podem ter view contabilizados //elementsToWatch.forEach(function(cb, el) { // if(isElementInViewport(el) == true) { // // remove da lista para não ser disparado novamente // elementsToWatch.delete(el); // cb(el); // } //}); done.then(function() { runningSearch = false; }); // reinicia o fluxo de procura look(); }; /** * Quando o elemento `el` entrar no viewport (-20%), cb será disparado. */ window.lazyload = function(el, cb) { if(el.nodeType != Node.ELEMENT_NODE) { throw new Error("element parameter should be a Element Node"); } if(typeof cb !== 'function') { throw new Error("callback parameter should be a Function"); } elementsToWatch.set(el, cb); } var setEvent = function() { hadAnEvent = true; }; window.addEventListener('scroll', setEvent, { capture: true, ive: true }); window.addEventListener('click', setEvent, { ive: true }); window.addEventListener('resize', setEvent, { ive: true }); window.addEventListener('load', setEvent, { once: true, ive: true }); window.addEventListener('DOMContentLoaded', setEvent, { once: true, ive: true }); window.gevent.on('allJSLoadedAndCreated', setEvent, window.gevent.RUN_ONCE); // inicia a validação look(); })();
  • AssineUOL
Topo

Sonda da Nasa revela como é Marte 'por dentro'

O sismômetro da InSight detectou mais de 700 eventos sísmicos desde o início de 2019 - Nasa/JPL-Caltech
O sismômetro da InSight detectou mais de 700 eventos sísmicos desde o início de 2019 Imagem: Nasa/JPL-Caltech

Jonathan Amos

Correspondente de Ciência da BBC

23/07/2021 17h42

A InSight detecta movimentos sísmicos no planeta vermelho desde o início de 2019. Seus dados mostraram espessura da crosta e tamanho do núcleo.

Cientistas dizem que agora podem descrever com números absolutos a estrutura rochosa interna de Marte.

Os dados foram obtidos a partir da sonda InSight, que detecta movimentos sísmicos no planeta vermelho desde o início de 2019.

A missão liderada pela Nasa, agência espacial americana, revelou que a espessura média da crosta de Marte tem entre 24km e 72km — um pouco mais fina do que se esperava.

Mas a principal descoberta foi o tamanho do núcleo do planeta — seu raio de 1.830 km está no topo das estimativas anteriores.

Esta é a primeira vez que cientistas conseguem mapear diretamente as camadas internas de um planeta (sem contar a Terra). Isso também foi feito na Lua, mas Marte (raio total: 3.390 km) está em uma escala muito maior.

Ter essas informações permite que os pesquisadores entendam melhor a formação e a evolução dos diferentes corpos planetários.

Interior de Marte - BBC - BBC
Imagem: BBC

A Insight chegou a estes resultados da mesma maneira que os sismólogos estudam as camadas internas da Terra — rastreando os sinais de abalos sísmicos.

Esses eventos liberam ondas de energia. Mudanças no trajeto e na velocidade das ondas revelam a natureza dos materiais rochosos pelos quais estão ando.

O sistema de sismômetro instalado pela sonda da Nasa observou centenas de tremores, sendo que alguns detectados nos últimos dois anos tinham as propriedades certas para "imaginar" o interior de Marte.

A equipe de instrumentação, liderada a partir da França e do Reino Unido, determinou que a parte externa rígida, a crosta, de Marte tem 20 km ou 39 km de espessura diretamente abaixo da sonda (dependendo da subcamada que exista).

Extrapolando os dados para a geologia de superfície conhecida do resto do planeta, isso sugere uma espessura média entre 24km e 72km. Para efeito de comparação, a espessura média da crosta terrestre é de 15-20km. Somente em uma região continental como a dos Himalaias pode chegar a 70km.

O número realmente interessante, no entanto, se refere ao núcleo. Os sinais de "martemotos" que reverberam neste elemento metálico indicam que começa quase na metade do caminho para baixo da superfície, a uma profundidade de cerca de 1.560 km — e que está em estado líquido.

A maioria das estimativas anteriores previa um núcleo menor.

sonda insight - Nasa/JPL-Caltech/Lockheed Martin - Nasa/JPL-Caltech/Lockheed Martin
A sonda InSight foi lançada em 2018, pousando em Marte em novembro do mesmo ano
Imagem: Nasa/JPL-Caltech/Lockheed Martin

A equipe da missão diz que duas consequências fascinantes derivam das novas observações diretas.

A primeira é que a massa e o momento de inércia conhecidos de Marte indicam que o núcleo é muito menos denso do que se pensava anteriormente, e que a liga de ferro-níquel que domina sua composição deve ser fortemente enriquecida com elementos mais leves, como enxofre.

A segunda consequência está relacionada à camada entre o núcleo e a crosta — o manto, que é mais fino do que se pensava inicialmente.

Mais uma vez, com base no tamanho conhecido de Marte, é altamente improvável que este manto possa atingir as pressões em que o mineral bridgmanita se torna estável.

Na Terra, esse mineral rígido cobre o núcleo, desacelerando a convecção e a perda de calor. No início de Marte, sua ausência teria levado a um resfriamento rápido.

Isso inicialmente teria permitido uma forte convecção no núcleo metálico e um efeito dínamo que gerou um campo magnético global. Mas isso, é claro, agora foi desativado. Hoje, nenhum campo magnético global pode ser detectado no planeta.

Se estivesse lá, forneceria alguma blindagem para proteger sua superfície da radiação prejudicial que é lançada constantemente do espaço e torna o mundo extremamente inóspito.

marte - Nasa/JPL-Caltech/Asu/Msss - Nasa/JPL-Caltech/Asu/Msss
A superfície de Marte é fria e seca, além de ser bombardeada com radiação
Imagem: Nasa/JPL-Caltech/Asu/Msss

Tom Pike, professor da Universidade Imperial College London, no Reino Unido, é um dos principais pesquisadores do sistema de sismômetro da Insight.

"Fomos capazes, pela primeira vez, de olhar dentro de outro planeta usando a sismologia, e o que vimos em Marte é que temos um núcleo maior e mais leve do que era esperado. E isso diz um pouco sobre como o planeta evoluiu ao longo do tempo geológico", afirma ele à BBC News.

Sanne Cottaar, da Universidade de Cambridge, no Reino Unido, que não faz parte da equipe da missão, descreveu os resultados da Insight como um "feito", dada a dificuldade de estudar os abalos sísmicos de pequena magnitude que ocorrem em Marte.

Eles nunca ficam acima de magnitude 4, o que os humanos só notariam a vários quilômetros do epicentro de um tremor. "Os martemotos são muito, muito fracos", explica.

"É muito mais desafiador do que fazer sismologia na Terra. Os cientistas da missão também tiveram que desenvolver métodos para trabalhar com apenas um sismômetro representado pela sonda InSight. Então, ver esses dados surgirem, e eles realmente serem capazes de olhar para dentro do planeta com esses dados é realmente impressionante."